
Comparing Block-based, Text-based, and Hybrid Blocks/Text
Programming Environments in Introductory Computer

Science Classes
David Weintrop

Northwestern University

Computation is changing our world. From how we communicate and how we

make decisions, to how we relax and how we shop - few aspects of our lives have been
left unaffected by the long reach of computation and the technologies that it enables.
Smartphones, tablets, and laptops have become the lenses through which we see,
organize, and interpret the world. As such, for young learners growing up in this
technological landscape, being able to recognize the capabilities and limitations of these
technologies, and most critically, to be able to contribute in this technological culture is
essential. Programming is the skill that enables this participation. Programming, and the
critical thinking and problem solving skills that accompany it, constitute a new 21st
century literacy that will need to live alongside reading, writing, and mathematics as
essential competencies to empower today’s students to fully engage with our
technological world. These skills have far reaching benefits as they underpin and enable
new forms of creative expression, support learning in diverse computational contexts
across a wide range of disciplines, and provide the foundation for future careers in our
increasing computationally driven economy. The bureau of labor statics estimates that
135,000 new computing jobs are created every year in the technology sector. Similar
growth of computing jobs is projected in other fields; by 2020, one in every two jobs in
the STEM disciplines will be in computing (ACM Education Policy Committee, 2014).

Despite this momentous shift happening in our world and the far-reaching
benefits that accompany learning to program, very little programming education can be
seen in today’s classrooms. Computer science, the field that is driving this computational
revolution, is rarely present in K-12 education. Only an estimated 10% of schools offer
programming or computer science courses (Code.org, 2014), and in schools where
computer science is present, courses are often taught in ways disconnected from the
computational lives of today’s students and leave the learner without the feeling of
empowerment that can and should accompany learning these skills. Further, the students
who have the opportunity to pursue programming do not reflect the racial and gender
distribution of the larger population. In 2013, 14.6% of bachelor’s degrees in computer
science and related fields were granted to female students, with 4.5% of the graduates
being African American, and 6.5% being Hispanic (Zweben & Bizot, 2014). This
disturbing trend is mirrored at the high school level, where only 18.6% of students who
took the 2013 AP Computer science exam were female, while 8.2% of test takers were
Hispanic, and only 3.7% were African American. Research into the cause of these low

numbers has identified numerous causes, including limited access to courses, a lack of
support for students who express interest in the field, and cultural issues that make
underrepresented populations feel unwelcome (Margolis, 2008; Margolis & Fisher, 2003).

Numerous national efforts are underway to address the lack of computer science
learning opportunities for both underrepresent minorities and the student body at large,
that utilize innovative materials, engaging pedagogy, and new tools and environments for
students to learn the concepts (Astrachan & Briggs, 2012; Goode et al., 2012). Central to
these initiatives is the use of new, more convivial forms of programming that emphasize
personal expression, align with current youth culture, and draw on prior student
knowledge and values. These new programming environments designed to make the
concepts more approachable, intuitive, and engaging for learners. Questions on the
effectiveness of these new tools with respect to how they affect learners’ perceptions of
the field, the feelings of confidence and identification as programmers they engender, and
understanding how these new programming environments affect students’ comprehension
of computer science concepts are of critical importance to this effort and are the focus of
this dissertation study.

This dissertation will answer three sets of interrelated research questions all of
which address different facets of the guiding question: How best can we educate the next
generation of computationally literate citizens? The first set of questions investigates the
relationship between the representations students use while learning to program and the
resulting attitudinal and conceptual outcomes. This is important as new environments for
teaching programming are emerging and becoming increasingly used in formal
educational settings, but we lack a clear understanding of the relationship between these
new tools and the resulting conceptual gains, attitudinal outcomes, and programming
practices they promote. Research towards this end has identified that representational
tools greatly affect the learning process and outcomes (diSessa, 2000; Green & Petre,
1996; Sherin, 2001; Wilensky & Papert, 2010), but little work has been done on the
current generation of programming environments with respect to these questions.

The second set of research questions looks at the suitability of these new
introductory programming approaches for preparing learners for future computer science
learning opportunities. Research is emerging that suggests that many of these
introductory tools, while successful in changing attitudes and engaging learners, do not
adequately prepare them to transition to more conventional programming languages, thus
imposing an artificial ceiling on how far learners can progress with these tools (Cliburn,
2008; Garlick & Cankaya, 2010; Parsons & Haden, 2007; Powers et al., 2007). This
finding is consequential as it calls into question the utility of such introductory tools in
the first place. The work done to date has largely provided descriptive accounts of
learners failing to transfer knowledge and practices from introductory environments to
more sophisticated, powerful tools. This dissertation will contribute detailed accounts of
students transitioning from introductory to professional programming environments, and

provide mechanistic, theoretically sound cognitive explanations of if, how, and why gains
made in introductory environments do or do not transfer to more sophisticated
programming tools.

The final set of research questions surround the evaluation of a new hybrid
introductory programming environment that will be designed and implemented as part of
this dissertation. The new environment will blend the strengths of various existing
programming tools in an effort to create a tool that provides the low-threshold to entry
and high level of engagement of existing introductory approaches, with the high-ceiling
and powerful expressivity of more fully featured programming tools. Based of findings
from the first two sets of questions, the goal is that this new programming tool can serve
as the central environment upon which new introductory computer science curricula can
be built.

This dissertation is built around a 3-condition, quasi-experimental study
comparing three introductory programming tools – two environments are exemplars of
common approaches currently used in introductory programming contexts, and the third
will be a new environment developed as part of the study. The study will take place over
20 weeks in three introductory programming classes at two Chicago public high schools
with diverse student populations. Beginning on the first day of school, students will
spend five weeks working through a custom designed curriculum using one of the three
introductory programming environments. At the conclusion of the fifth week of school,
all three classes will transition to the Java programming language and follow the same
curriculum for the remainder of the year. With this study design we can directly compare
the effectiveness of the three different introductory environments, as well as, answer
questions about their suitability for preparing students for future learning as we follow
the students through their transition to the Java programming language. The study uses a
mixed-methods approach and will include qualitative, quantitative, and computational
data collection and analysis techniques. During the 20-week study, we will observe
classrooms on a weekly basis, conduct student interviews, collect and analyze student-
authored programs, and administer pre/mid/post content assessments and attitudinal
survey to answer the stated research questions.

We are at a critical juncture in the history of computer science education in this
country. The ability to program is a central skill all students should develop, but it is
currently absent from the coursework of today’s students. To address this gap, educators,
school administrators, and state and national legislators are all taking action to bring
computer science into the classroom. The practices, tools, and curricula that are being
developed today, will become the standards used for years to come. Therefore, it is
critical that we are confident that the curricula and environments that we advocate for
today are effective at teaching the core concepts, engaging learners from diverse
backgrounds, and successful in preparing students for the computational endeavors they
will face in the future. The findings from this dissertation will advance our understanding

of how best to introduce students to these core 21st century skills and contribute new tools
that will prepare students to be successful in the computational futures that await them.

References
Astrachan, O., & Briggs, A. (2012). The CS principles project. ACM Inroads, 3(2), 38–42.
Cliburn, D. C. (2008). Student opinions of Alice in CS1. In Frontiers in Education

Conference, 2008. FIE 2008. 38th Annual (p. T3B–1). IEEE.
diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge,

MA: MIT Press.
Education Policy Committee, A. (2014). Rebooting the Pathway to Success Preparing

Students for Computing Workforce Needs in the United States. Association for
Computing Machinery.

Garlick, R., & Cankaya, E. C. (2010). Using Alice in CS1: A quantitative experiment. In
Proceedings of the fifteenth annual conference on Innovation and technology in
computer science education (pp. 165–168). ACM.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: the exploring
computer science program. ACM Inroads, 3(2), 47–53.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming
environments: A “cognitive dimensions” framework. Journal of Visual
Languages and Computing, 7(2), 131–174.

Margolis, J. (2008). Stuck in the shallow end: Education, race, and computing. The MIT
Press.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. The
MIT Press.

Parsons, D., & Haden, P. (2007). Programming osmosis: Knowledge transfer from
imperative to visual programming environments. In S. Mann & N. Bridgeman
(Eds.), Procedings of The Twentieth Annual NACCQ Conference (pp. 209–215).
Hamilton, New Zealand.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching
CS0 with Alice. ACM SIGCSE Bulletin, 39(1), 213–217.

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as
expressive languages for physics. International Journal of Computers for
Mathematical Learning, 6(1), 1–61.

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulating knowledge
disciplines through new representational forms. In J. Clayson & I. Kallas (Eds.),
Proceedings of the Constructionism 2010 conference. Paris, France.

Zweben, S., & Bizot, B. (2014). 2013 Taulbee Survey. COMPUTING, 26(5).

